Spice it up with WebGL

The internet has evolved a lot since it’s inception with the initial intend to serve as a means to link hypertext documents together. The browser is now as capable as anything and when chrome WebGL support was introduced in 2011 we opened the portal to another dimension for the web.

Microsoft introduced the concept of DHTML (Dynamic HTML) with the release of Internet Explorer 4 in 1997. This first step away from static contents allowed you to dynamically size and move things around, E.g. like the space-shuttle and the satellite on my first homepage.

DHTML example
Example of DHTML

In 2008 the first working draft of HTML5 came out and with it the beginning of the end of Flash. Two new technologies in particular caused a lot of excitment in the web development community. SVG, and Canvas ( 2D-Context only ).

Finally in 2011 Google introduced WebGL as the 3D context of the canvas element on all platforms. By now ( 2017 ) all browsers support one of the WebGL standards ( v1.0 or v2.0 ) , after all 6 years is an eternity for the internet. You can count on hardware accelerated 3D graphics rendering on mobile devices as well as on the desktop browsers.
Please check here for your current browser.

Welcome to the world of 3D

WebGL is rendered in hardware and is thus quite fast and capable. Aside from writing your own games you can also use it like any other graphic asset on your web page and E.g. use it as your dynamic, über-cool 3D background.

The only thing you will have to keep in mind is the performance of your visitors computers / mobile devices.

Three.JS, ShaderToy and WebGL

In this episode I am going to develop a 3D animated background in POJS ( Plain Old JavaScript ), as well as in QooxDoo. The goal is to use one of the demos from ShaderToy, convert it to Three.JS and utilize it inside a canvas – tag with a 3D-Context.

Well if the last sentence was too much for you, don’t worry I will go through all details of this in the next few paragraphs.

But first lets have a look at the individual tools and technologies.


As previously stated WebGL became part of the browser in 2011. In order to create a simple scene you have to write a bunch of JavaScript code

<!DOCTYPE html>
        <title>Basic WebGL</title>
<script type="text/javascript">
function shaderProgram(gl, vs, fs) {
        var prog = gl.createProgram();
        var addshader = function(type, source) {
                var s = gl.createShader((type == 'vertex') ?
                        gl.VERTEX_SHADER : gl.FRAGMENT_SHADER);
                gl.shaderSource(s, source);
                if (!gl.getShaderParameter(s, gl.COMPILE_STATUS)) {
                        throw "Could not compile "+type+
                                " shader:\n\n"+gl.getShaderInfoLog(s);
                gl.attachShader(prog, s);
        addshader('vertex', vs);
        addshader('fragment', fs);
        gl.getProgramParameter(prog, gl.LINK_STATUS);
        return prog;

function attributeSetFloats(gl, prog, attr_name, rsize, arr) {
        gl.bindBuffer(gl.ARRAY_BUFFER, gl.createBuffer());
        gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(arr),
        var attr = gl.getAttribLocation(prog, attr_name);
        gl.vertexAttribPointer(attr, rsize, gl.FLOAT, false, 0, 0);

function draw() {
        var gl = document.getElementById("webgl").getContext("experimental-webgl");
        gl.clearColor(0.8, 0.6, 0.4, 1);

        var prog = shaderProgram(gl,
                "attribute vec3 pos;"+
                "void main() {"+
                "       gl_Position = vec4(pos, 2.0);"+
                "void main() {"+
                "       gl_FragColor = vec4(0.4, 0.6, 0.8, 1.0);"+
        attributeSetFloats(gl, prog, "pos", 3, [
                -1,  0, 0,
                 0,  1, 0,
                 0, -1, 0,
                 1,  0, 0
        gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);

function init() {
// Wait for 100msec ...
setTimeout ( init, 100 );

<canvas id="webgl" width="400" height="200"></canvas>

Render Output :


Three.js was first released by Ricardo Cabello ( Aka MrDOOB ) to GitHub in April 2010.

It is released under the MIT license and became the de-facto standard for web based 3D programming in no time.
The reason is that three.js adds an abstraction layer on top of WebGL which allows you to program it more as you would expect it to be.

Below is a Three.JS powered “Hello World” example.

<!doctype html>
        <title>Three.JS Hello World</title>
<body style="margin: 0; overflow: hidden; background-color: #000;" >
        <div id="webgl"></div>
        <script src="three.min.js"></script>

        var webglEl = document.getElementById('webgl');
        var width   = window.innerWidth;
        var height  = window.innerHeight;

        // Earth params
        var radius   = 0.5;
        var segments = 32;
        var rotation = 6;  

        var scene = new THREE.Scene();
        var camera = new THREE.PerspectiveCamera(45, width / height, 0.01, 1000);
        camera.position.z = 1.5;
        var renderer = new THREE.WebGLRenderer();
        renderer.setSize(width, height);
        scene.add(new THREE.AmbientLight(0x333333));
        var light = new THREE.DirectionalLight(0xffffff, 1);

        var sphere = createSphere(radius, segments);
        sphere.rotation.y = rotation; 

        var clouds = createClouds(radius, segments);
        clouds.rotation.y = rotation;

        var stars = createStars(90, 64);

        function render() {
                sphere.rotation.y += 0.0005;
                clouds.rotation.y += 0.0005;
                renderer.render(scene, camera);

        function createSphere(radius, segments) {
                return new THREE.Mesh(
                        new THREE.SphereGeometry(radius, segments, segments),
                        new THREE.MeshPhongMaterial({
                                map:         THREE.ImageUtils.loadTexture('images/2_no_clouds_4k.jpg'),
                                bumpMap:     THREE.ImageUtils.loadTexture('images/elev_bump_4k.jpg'),
                                bumpScale:   0.005,
                                specularMap: THREE.ImageUtils.loadTexture('images/water_4k.png'),
                                specular:    new THREE.Color('grey')

        function createClouds(radius, segments) {
                return new THREE.Mesh(
                        new THREE.SphereGeometry(radius + 0.003, segments, segments),
                        new THREE.MeshPhongMaterial({
                                map:         THREE.ImageUtils.loadTexture('images/fair_clouds_4k.png'),
                                transparent: true

        function createStars(radius, segments) {
                return new THREE.Mesh(
                        new THREE.SphereGeometry(radius, segments, segments), 
                        new THREE.MeshBasicMaterial({
                                map:  THREE.ImageUtils.loadTexture('images/galaxy_starfield.png'), 
                                side: THREE.BackSide


Render Output :

As you can see, using Three.JS we can achieve much more with about the same number of lines. That is not to say that it is not possible to create amazing things in WebGL in just under 100 lines of code, however the best would be if you combine both approaches.

Please feel free to visit the main web page for Three.js and spend some time browsing the available samples. I am certain that you will discover some joy and wonders on this web page. In case you don’t know where to start. This is a perfect place to spend about 19 minutes of your existence, to remember the fallen.

Now let’s look at another favorite of mine. This time it is a web page to show off …

ShaderToy wonderland

If you visit the Shadertoy.com – web page, you will find a thousands of cool demos, including some small games, all written utilizing the graphics card hardware accelerate shader pipelines.

What I wanted to achieve in this episode of teaching JavaScript was to add this toy by Frankenburgh as a background to AstraNOS. Some minor adjustments, like no sound and no story telling ( yes if you watch the original long enough you will get the story ), just an ever spinning Galaxy …

ShaderToy and Three.JS combination

In order to marry those two we have to know the data required for ShaderToy to work and create the appropriate interface for them in the shader such that Three.JS can take on the rendering. See, Shadertoy creates all its magic on a 2D plane and displays the ‘texture’ then accordingly in the 3D context. Three.JS is all 3D through and through …

The following sample glues them into one big happy unity and dynamically loads the ( almost never changing ) vertex.shader, and then the fragment.shader code.

<!DOCTYPE html>
<html lang="en">
<body style="background-color: #000000; margin: 0px; overflow: hidden; ">
        <div id="container"></div>
        <script src="three.min.js"></script>

function fetchFile ( path, callback, ctx )  {
    var httpRequest = new XMLHttpRequest();
    httpRequest.onreadystatechange = function() {
        if (httpRequest.readyState === 4) {
            if (httpRequest.status === 200) {
                if (callback) callback( httpRequest.responseText );
    httpRequest.open('GET', path);

document.loadData = function ( files, clb, ctx, pre )  {
  var rsp  = [];
  var load = function ( list )  {
    if ( list.length === 0 ) {
      if ( clb )
        clb.call ( ctx, rsp );
    var res = list.shift ( );
    var uri = pre ? pre : ""; uri += res;
    fetchFile ( uri, function ( data )  {
      rsp.push ( data );
      load ( list );
    }, this );
  load ( files );

var container;
var camera, scene, renderer;
var uniforms;
var startTime;
var clock;

function init ( vert, frag )  {
  container = document.getElementById( 'container' );
  clock  = new THREE.Clock  ( );
  camera = new THREE.Camera ( );
  scene  = new THREE.Scene  ( );
  camera.position.z = 1;

  var geometry = new THREE.PlaneGeometry( 3, 3 );
  uniforms = {
    iGlobalTime: { type: "f", value: 1.0 },
    iResolution: { type: "v2", value: new THREE.Vector2() }

  var fs = boilerPlate ( 1 ) + frag + boilerPlate ( 2 );
  var material = new THREE.ShaderMaterial( {
    uniforms: uniforms,
    vertexShader:   vert,
    fragmentShader: fs
  } );

  var mesh = new THREE.Mesh( geometry, material );
  scene.add( mesh );

  renderer = new THREE.WebGLRenderer();
  container.appendChild( renderer.domElement );


  window.addEventListener( 'resize', onWindowResize, false );

function onWindowResize( event ) {
  uniforms.iResolution.value.x = window.innerWidth;
  uniforms.iResolution.value.y = window.innerHeight;
  renderer.setSize( window.innerWidth, window.innerHeight );

function animate ( )  {
  requestAnimationFrame ( animate );
  render ( );

function render() {
  uniforms.iGlobalTime.value += clock.getDelta ( );
  renderer.render ( scene, camera );

document.loadData ( [ "vertex.shader", "fragment.shader" ], function ( data )  {
  this.init ( data[0], data[1] );
  animate ( );
}, window, "/data/webgl/" );

   function boilerPlate ( part )  {
      var ret = "";
      if ( part === 1 )  {
        ret  = "//#extension GL_OES_standard_derivatives : enable\n";
        ret += "//#extension GL_EXT_shader_texture_lod : enable\n";
        ret += "#ifdef GL_ES\n";
        ret += "precision highp float;\n";
        ret += "#endif\n";
        ret += "uniform vec2      iResolution;\n";
        ret += "uniform float     iGlobalTime;\n";
        ret += "uniform float     iChannelTime[4];\n";
        ret += "uniform vec4      iMouse;\n";
        ret += "uniform vec4      iDate;\n";
        ret += "uniform float     iSampleRate;\n";
        ret += "uniform vec3      iChannelResolution[4];\n";
        ret += "uniform int       iFrame;\n";
        ret += "uniform float     iTimeDelta;\n";
        ret += "uniform float     iFrameRate;\n";
        ret += "struct Channel\n";
        ret += "{\n";
        ret += "    vec3  resolution;\n";
        ret += "    float time;\n";
        ret += "};\n";
        ret += "uniform Channel iChannel[4];\n";
        ret += "uniform sampler2D iChannel0;\n";
        ret += "uniform sampler2D iChannel1;\n";
        ret += "uniform sampler2D iChannel2;\n";
        ret += "uniform sampler2D iChannel3;\n";
        ret += "void mainImage( out vec4 c,  in vec2 f );\n";
      else {
        ret  = "void main( void ){\n";
        ret += "  vec4 color = vec4(0.0,0.0,0.0,1.0);\n";
        ret += "  mainImage( color, gl_FragCoord.xy );\n";
        ret += "  color.w = 1.0;\n";
        ret += "  gl_FragColor = color;\n";
        ret += "}\n";
      return ret;


varying vec2 vUv;
void main ( )  {
  vUv = uv;
  gl_Position = vec4( position, 1.0 );

// Galaxy shader
// Created by Frank Hugenroth  /frankenburgh/   07/2015
// Released at nordlicht/bremen 2015

// random/hash function              
float hash( float n )
  return fract(cos(n)*41415.92653);

// 2d noise function
float noise( in vec2 x )
  vec2 p  = floor(x);
  vec2 f  = smoothstep(0.0, 1.0, fract(x));
  float n = p.x + p.y*57.0;

  return mix(mix( hash(n+  0.0), hash(n+  1.0),f.x),
    mix( hash(n+ 57.0), hash(n+ 58.0),f.x),f.y);

float noise( in vec3 x )
  vec3 p  = floor(x);
  vec3 f  = smoothstep(0.0, 1.0, fract(x));
  float n = p.x + p.y*57.0 + 113.0*p.z;

  return mix(mix(mix( hash(n+  0.0), hash(n+  1.0),f.x),
    mix( hash(n+ 57.0), hash(n+ 58.0),f.x),f.y),
    mix(mix( hash(n+113.0), hash(n+114.0),f.x),
    mix( hash(n+170.0), hash(n+171.0),f.x),f.y),f.z);

mat3 m = mat3( 0.00,  1.60,  1.20, -1.60,  0.72, -0.96, -1.20, -0.96,  1.28 );

// Fractional Brownian motion
float fbmslow( vec3 p )
  float f = 0.5000*noise( p ); p = m*p*1.2;
  f += 0.2500*noise( p ); p = m*p*1.3;
  f += 0.1666*noise( p ); p = m*p*1.4;
  f += 0.0834*noise( p ); p = m*p*1.84;
  return f;

float fbm( vec3 p )
  float f = 0., a = 1., s=0.;
  f += a*noise( p ); p = m*p*1.149; s += a; a *= .75;
  f += a*noise( p ); p = m*p*1.41; s += a; a *= .75;
  f += a*noise( p ); p = m*p*1.51; s += a; a *= .65;
  f += a*noise( p ); p = m*p*1.21; s += a; a *= .35;
  f += a*noise( p ); p = m*p*1.41; s += a; a *= .75;
  f += a*noise( p ); 
  return f/s;

void mainImage( out vec4 fragColor, in vec2 fragCoord )
        float time = iGlobalTime * 0.1;

        vec2 xy = -1.0 + 2.0*fragCoord.xy / iResolution.xy;

        // fade in (1=10sec), out after 8=80sec;
        float fade = 1.0; //min(1., time*1.)*min(1.,max(0., 15.-time));
        // start glow after 5=50sec
        float fade2= 0.37; //max(0., time-10.)*0.37;
        float glow = max(-.25,1.+pow(fade2, 10.) - 0.001*pow(fade2, 25.));

        // get camera position and view direction
        vec3 campos = vec3(500.0, 850., 1800.0 ); //-.0-cos((time-1.4)/2.)*2000.); // moving
        vec3 camtar = vec3(0., 0., 0.);

        float roll = 0.34;
        vec3 cw = normalize(camtar-campos);
        vec3 cp = vec3(sin(roll), cos(roll),0.0);
        vec3 cu = normalize(cross(cw,cp));
        vec3 cv = normalize(cross(cu,cw));
        vec3 rd = normalize( xy.x*cu + xy.y*cv + 1.6*cw );

        vec3 light   = normalize( vec3(  0., 0.,  0. )-campos );
        float sundot = clamp(dot(light,rd),0.0,1.0);

        // render sky

    // galaxy center glow
    vec3 col = glow*1.2*min(vec3(1.0, 1.0, 1.0), vec3(2.0,1.0,0.5)*pow( sundot, 100.0 ));
    // moon haze
    col += 0.3*vec3(0.8,0.9,1.2)*pow( sundot, 8.0 );

        // stars
        vec3 stars = 85.5*vec3(pow(fbmslow(rd.xyz*312.0), 7.0))*vec3(pow(fbmslow(rd.zxy*440.3), 8.0));

        // moving background fog
    vec3 cpos = 1500.*rd + vec3(831.0-time*30., 321.0, 1000.0);
    col += vec3(0.4, 0.5, 1.0) * ((fbmslow( cpos*0.0035 ) - .5));

        cpos += vec3(831.0-time*33., 321.0, 999.);
    col += vec3(0.6, 0.3, 0.6) * 10.0*pow((fbmslow( cpos*0.0045 )), 10.0);

        cpos += vec3(3831.0-time*39., 221.0, 999.0);
    col += 0.03*vec3(0.6, 0.0, 0.0) * 10.0*pow((fbmslow( cpos*0.0145 )), 2.0);

        // stars
        cpos = 1500.*rd + vec3(831.0, 321.0, 999.);
        col += stars*fbm(cpos*0.0021);

        // Clouds
    vec2 shift = vec2( time*100.0, time*180.0 );
    vec4 sum = vec4(0,0,0,0); 
    float c = campos.y / rd.y; // cloud height
    vec3 cpos2 = campos - c*rd;
    float radius = length(cpos2.xz)/1000.0;

    if (radius<1.8)
          for (int q=10; q>-10; q--) // layers
                if (sum.w>0.999) continue;
        float c = (float(q)*8.-campos.y) / rd.y; // cloud height
        vec3 cpos = campos + c*rd;

                float see = dot(normalize(cpos), normalize(campos));
                vec3 lightUnvis = vec3(.0,.0,.0 );
                vec3 lightVis   = vec3(1.3,1.2,1.2 );
                vec3 shine = mix(lightVis, lightUnvis, smoothstep(0.0, 1.0, see));

                // border
            float radius = length(cpos.xz)/999.;
            if (radius>1.0)

                float rot = 3.00*(radius)-time;
        cpos.xz = cpos.xz*mat2(cos(rot), -sin(rot), sin(rot), cos(rot));
                cpos += vec3(831.0+shift.x, 321.0+float(q)*mix(250.0, 50.0, radius)-shift.x*0.2, 1330.0+shift.y); // cloud position
                cpos *= mix(0.0025, 0.0028, radius); // zoom
        float alpha = smoothstep(0.50, 1.0, fbm( cpos )); // fractal cloud density
                alpha *= 1.3*pow(smoothstep(1.0, 0.0, radius), 0.3); // fade out disc at edges
                vec3 dustcolor = mix(vec3( 2.0, 1.3, 1.0 ), vec3( 0.1,0.2,0.3 ), pow(radius, .5));
        vec3 localcolor = mix(dustcolor, shine, alpha); // density color white->gray
                float gstar = 2.*pow(noise( cpos*21.40 ), 22.0);
                float gstar2= 3.*pow(noise( cpos*26.55 ), 34.0);
                float gholes= 1.*pow(noise( cpos*11.55 ), 14.0);
                localcolor += vec3(1.0, 0.6, 0.3)*gstar;
                localcolor += vec3(1.0, 1.0, 0.7)*gstar2;
                localcolor -= gholes;
        alpha = (1.0-sum.w)*alpha; // alpha/density saturation (the more a cloud layer\\\'s density, the more the higher layers will be hidden)
        sum += vec4(localcolor*alpha, alpha); // sum up weightened color

          for (int q=0; q<20; q++) // 120 layers
                if (sum.w>0.999) continue;
        float c = (float(q)*4.-campos.y) / rd.y; // cloud height
        vec3 cpos = campos + c*rd;

                float see = dot(normalize(cpos), normalize(campos));
                vec3 lightUnvis = vec3(.0,.0,.0 );
                vec3 lightVis   = vec3(1.3,1.2,1.2 );
                vec3 shine = mix(lightVis, lightUnvis, smoothstep(0.0, 1.0, see));

                // border
            float radius = length(cpos.xz)/200.0;
            if (radius>1.0)

                float rot = 3.2*(radius)-time*1.1;
        cpos.xz = cpos.xz*mat2(cos(rot), -sin(rot), sin(rot), cos(rot));
                cpos += vec3(831.0+shift.x, 321.0+float(q)*mix(250.0, 50.0, radius)-shift.x*0.2, 1330.0+shift.y); // cloud position
        float alpha = 0.1+smoothstep(0.6, 1.0, fbm( cpos )); // fractal cloud density
                alpha *= 1.2*(pow(smoothstep(1.0, 0.0, radius), 0.72) - pow(smoothstep(1.0, 0.0, radius*1.875), 0.2)); // fade out disc at edges
        vec3 localcolor = vec3(0.0, 0.0, 0.0); // density color white->gray
        alpha = (1.0-sum.w)*alpha; // alpha/density saturation (the more a cloud layer\\\'s density, the more the higher layers will be hidden)
        sum += vec4(localcolor*alpha, alpha); // sum up weightened color
        float alpha = smoothstep(1.-radius*.5, 1.0, sum.w);
    sum.rgb /= sum.w+0.0001;
    sum.rgb -= 0.2*vec3(0.8, 0.75, 0.7) * pow(sundot,10.0)*alpha;
    sum.rgb += min(glow, 10.0)*0.2*vec3(1.2, 1.2, 1.2) * pow(sundot,5.0)*(1.0-alpha);

        col = mix( col, sum.rgb , sum.w);//*pow(sundot,10.0) );

    // haze
        col = fade*mix(col, vec3(0.3,0.5,.9), 29.0*(pow( sundot, 50.0 )-pow( sundot, 60.0 ))/(2.+9.*abs(rd.y)));

    // Vignetting
        vec2 xy2 = gl_FragCoord.xy / iResolution.xy;
        col *= vec3(.5, .5, .5) + 0.25*pow(100.0*xy2.x*xy2.y*(1.0-xy2.x)*(1.0-xy2.y), .5 );

        fragColor = vec4(col,1.0);

Render Output :

And now to AstraNOS

At this point we are almost at the point of adding it as a background to AstraNOS. I have to plugin the code into a QooxDoo base class called qx.core.Object and we are good to go.

Galaxy Background
Galaxy Background in AstraNOS

You can watch my video Here

And as usual you can go and play with the actual code Here …

Using a RESTFul API in JavaScript

I have just released the third video in the JavaScript Bushido series. This video will go into what is REST and how to leverage this interface in a Qooxdoo web application.

RESTful API Logo
RESTful API Logo

The normal HTTP based request / response paradigm shifted in 2005, when Ajax ( also known as XMLHttpRequest ) became popular through the utilization in google maps.

Before Ajax every call to the back-end server would usually refresh the whole web page unless you would do some iframe based trickery.

Additionally in 2011 both WebSockets, and WebRTC have been added to most browsers which allow an efficient way to  communicate between server and browser, as well as browser to browser.

Using either method, it is possible to load data or code dynamically into the web page.

What is REST:

REST stands for “Representational State Transfer

Roy Fielding defined REST in his PhD dissertation from 2000 titled
“Architectural Styles and the Design of Network-based Software Architectures” at UC Irvine.

Unlike SOAP-based Web services, there is no “official” standard for RESTful Web APIs. This is because REST is an architectural style, while SOAP is a protocol.

A RESTFula API usually provides a means to do CRUD operations on an object.

What is CRUD:

CRUD is an acronym and stands for Create, Read, Update, and Delete. It is a way to say
“I want to be able to create, read, update, or delete something somewhere” compressed into a single word.

Before there was REST there was JSON-RPC:
REST has become a de-facto standard in modern web based applications. It has replaced the XML based SOAP/WSDL
as well as JSON-RPC.

How does a REST interface look like ?

A typical RESTful API is accessed through a well defined endpoint on a web server.
For example if you go https://jsonplaceholder.typicode.com/photos/ you will receive a JSON response which is an array of 5000 objects.

    "albumId": 1,
    "id": 1,
    "title": "accusamus beatae ad facilis cum similique qui sunt",
    "url": "http://placehold.it/600/92c952",
    "thumbnailUrl": "http://placehold.it/150/92c952"
    "albumId": 1,
    "id": 2,
    "title": "reprehenderit est deserunt velit ipsam",

If you are interested in more detail about one of the returned items you would additionally provide the id https://jsonplaceholder.typicode.com/photos/7 behind the RESTful endpoint.

  "albumId": 1,
  "id": 7,
  "title": "officia delectus consequatur vero aut veniam explicabo molestias",
  "url": "http://placehold.it/600/b0f7cc",
  "thumbnailUrl": "http://placehold.it/150/b0f7cc"

But how do I create things

The sample above only showed the retrieval of datafrom a web server. But as I said before REST lets you also execute create, update, and delete operations on the backend.

This is achieved by using different HTTP VERBS

  • POST: will create an object
  • PUT: will modify / update an object
  • GET: will retrieve an object ( mostly in JSON format )
  • DELETE: will delete an object
  • OPTIONS: will provide information about the API call ( not very often used )

The best way to experiment with REST is to install POSTMAN as a plugin for chrome.

Postman in action

You can watch my video Here

And as usual you can go and play with the actual code Here …

The most beautiful thing

I found the most beautiful thing while going down memory lane this morning I stumbled over this video from way back when.

Sometimes it is good to sit back and reflect on the wonders we have in our lives today which we no longer perceive as such. We are surrounded by wonderful things which we notice the same way we notice a ghost before our eyes. We are sleep-walking by them refusing to give our brain the chance truly understand.

From the omnipresent cellphone to the internet of things. The space projects which received a recent boost through Elon Musk to the vast data centers set up by Amazon and Google. These are all man made marvels. However I challenge you to think back to the last time you marveled at a butterfly or the beautiful lines in a tree from the ground to the sky.

Think back at the progress human kind has made in your lifetime and then think forward to the change our kids may see.

In the sixties it was all but certain that by the year 2000 we will be traveling to the moon on a regular basis. While this has not panned-out we have accelerated in other areas. We have overcome the cold war, rivers were cleaned up and nature was preserved. We are working towards high-tech, higher-tech, and cyber-tech. When the borg meet Wall-E, HALL 9000 will be forgotten.

The Borg find Wall-E
The Borg find Wall-E

So wake up and look around. What are the wonders that you see ?

First QooxDoo Application

I have created the second video in the JavaScript Bushido series.

In this video I am taking a step back and going to the basics.

Installing Qooxdoo from github, and starting your first project.

To retrieve qooxdoo from command line you have to type

  bash> git clone https://github.com/qooxdoo/qooxdoo.git 

This will take some time to complete the download because a git repository contains the complete history. Once the download completes you can create a new project through

  bash> mkdir workspace && cd workspace && ../qooxdoo/create-application.py --name=DemoApp
  bash> cd DemoApp && ./generate.py build

The final result:

This will generate a simple push button on a web page.

First Qooxdoo Application
First Qooxdoo Application

Now granted that this is not the coolest web page out there but you have only spent about 5 minutes to create it. Now if you spend some more time on it you can eventually create more complex applications, like a Random Password Generator ( approx 100 lines of code ) or a simple calculator ( approx 200 lines of code ).

As a matter of fact you can create quite complex applications which natively support multiple languages, multiple Themes, multiple icon sets etc … . I believe if you have an idea of a complex web based application you will find a solution with Qooxdoo.

As with the first episode, you can checkout the code online Here …

Questions or suggestions ?

Please don’t hesitate to leave a comment below if you have questions or suggestions. I had fun creating this short tutorial and I hope it is useful to you.

Cloud abstraction layer

The plain pain

Imagine that you have written a really good web app, and you have distributed it to many customers these customers in turn acquired a lot of customers.

Now fast forward a few months and all of a sudden you are getting calls to help fix issues with your platform. For some unforsaken reason your cloud storage integration stopped working.

Because you have moved on to the next thing you have only limited time to spend on fixing the issue. What you eventually discover is that a service provide decided to change the API from version X to version Y.

Now you have to sit down and spend a couple of days fixing what is been broken.

Sleep Mode Zero
Sleep Mode Zero

That is something you have to deal with all the time in an actively changing web environment.

APIs change and certain providers may stop offering services or worse go out of business.

How to avoid the pain

Most web based APIs use a RESTFul interface to their services. As such the steps involved in utilizing a online service is usually accomplished through OAuth2 authorization to gain secure access to users data, followed by the utilization of the actual API.

As a developer you are free to develop to a specific API or to abstract the API in a way where you can easily replace one service/API with another.

However every single line of code you write you will have to maintain yourself and make sure that changes over time will not break functionality.

Cloud abstraction layer, the better way

Every now and then you can do one better though. Take for example web storage. There are many providers of web storage, such as box, Dropbox, S3, Google storage etc. If you want to offer a wide selection of possible back-end storage platforms you would be well advised to look into a framework such as Flysystem for PHP.

The PHP League Logo
The PHP League Logo

Flysystem abstracts it the different back-end APIs and provided a unified interface. You can find a multitude of third party connectors, such as Azure, S3, Dropbox, box etc. You can also find some strange adaptations such as GitHub or flicker for it in case you have use for it.

The most important thing to remember though is that if one of the available back-end APIs changes you will be able to replace it with almost no additional work required on your side.

Also if a provider goes out of business, you can quickly switch to another provider. And finally, if a service provider changes the API version and ignores backwards compatibility you can simply replace the old library with a new library with the same API calls.

There are however some shortcomings to adding an cloud abstraction layer

  • It is usually not as comprehensive in its feature set
  • The additional code will slow down the requests a few milliseconds
  • It will increase the projects complexity
  • Not every supported back-end-API may provide the required data. E.g. certain storage back-ends don’t support a file system natively

AstraNOS integration

Since I had to move from Dropbox v1 to Dropbox v2, I switched over to utilize the cloud abstraction layer provided by Flysystem for AstraNOS. Integrating the OAuth2 client from the PHP League us also unifying the signups mechanism for cloud storage back-end ( and more if I ever need to ).

Working Dropbox integration
Working Dropbox integration

With this addition I will now be able to increase the available back-end services with little additional work, though I would guess that it still requires a good day per back-end.

However this is a price worth paying if we can leverage multiple cloud based back-ends at the same time and in the same environment. Working seamlessly between them as it has been intended.

Online JavaScript IDE for AstraNOS

The past few days have been filled with some exciting new features for AstraNOS.
I am adding things as I am using AstraNOS and certain features are missing.

Changes to the IDE

The IDE received a direct integration of the online help for QooxDoo as well as the ability to run your JS application windows directly from within the IDE.

Online JavaScript IDE
Online JavaScript IDE

Creating new application, and dialogs has never been that easy for me. This will be very helpful when I continue to work through the next few training videos for QooxDoo and AstraNOS.

New Class Dialog
New Class Dialog

Another add-on to the IDE is the “New Class” menu item which will now bring up the following dialog to select the type of class you want to create.
You can take the IDE for a spin using this link : https://www.AstraNOS.org/MiyamotoMusashi/BattleGround.php?course=1

Changes to the FolderView

New Context Menu Items
New Context Menu Items

Finally I added “Download”, “Copy”, and “Rename” to the context menu items in the Folder View, and “Paste” if you right click on an empty space.

This way you can now use the FolderView to work with files which is faster. Previously you would have to go to the ContentBrowser to achieve the same.

ContentBrowser Context Menu

The ContenView is still the main dialog to work on / with files as it supports working on files sitting in your box or DropBox accounts.

Dropbox Kaput :

Well, the ContenView WAS able to use Dropbox, until September this year. Here is DropBox’s announcement :
“In June 2016, we announced the deprecation timeline for API v1. When API v1 is retired in September 2017, any further API v1 calls will fail with a 400 error with the body:”

and sure enough …

Uncaught exception 'Dropbox\Exception_BadRequest' with message 'HTTP status 400
{"error": "v1_retired"}'

So I went ahead and I chose https://github.com/kunalvarma05/dropbox-php-sdk to replace the older library I was using. I am planning in completing the port within the next two days.

Program a random password generator in QooxDoo

I have created my first video in a series of planned videos on programming in QooxDoo.

Programming in QooxDoo:

QooxDoo is a object oriented JavaScript library which allows you to create any type of widget, like List controls, Tree controls, Windows etc. Inside the browser without the need to worry about browser compatibility.

Aside from being very easy to use, this framework is fully object oriented and is better than any other framework I have seen in the past. Obviously people have their own preferences, and frameworks like jQuery, and Angular are at the top of their game. QooxDoo like other frameworks has strong parts and its weak parts.

This episode goes through some basics first before I dive into the programming part. As mentioned above I create a random password generator which you can use whenever you are asked to either create a new password or re-new your old password.

You can find the video on YouTube.

Password Generator preview
Password Generator preview

The resulting application looks like this

What I have learned from my first video tutorial:

I found that my mic is too sensitive to the higher frequency ranges and going forward I will have to either find a hardware equalizer or do some post production on the audio in software.

Since I am using Linux, my setup is all open source and freely available. As such some of the shortcomings are that Audacity is crashing once in a while, KDenlive was constantly crashing and unusable so I had to switch to OpenShot. I may give Blender’s built in NLE ( Non Linear Video Editor ) a go in a future part.

My keyboard ‘hacking’ is way to loud and will either need to find another keyboard, try to get the right filter settings to suppress it as much as possible ( without too affecting the overall audio quality too much ) or place my mic in a better spot.

Bottom line:

I had a lot of fun putting this tutorial together. I spent probably twice as much time on getting my equipment in place, and preparing AstraNOS for the link to allow people to try for themselves Here …..

The next episode will take most likely less time overall and I will also try my best to cut down the duration of the next episode to be 10 minutes or less.

I learned a ton of things and I am going to continue to learn during my next videos.

RIP TechShop

We do not have a TechShop in our area however anytime a space where makers meet and create, teach, and discover closes it is a setback to education, innovation and curiosity.

“We have grown from one location in Menlo Park to 10 locations across the US and 4 Internationally..”

About TechShop

Founded in October 2006, TechShop started as a membership-based, do-it-yourself (DIY) workshop and fabrication studio. Over a decade later, TechShop, Inc. grew into an international consulting company sharing it’s makerspace expertise with grade schools and fortune 500 companies alike.

TechShop offered consulting, market assessments, licensing options, curriculum, and various other managed services to economic development councils, libraries, non-profits and educational institutions, design firms and other makerspaces. TechShop encourages you to find a way to grow the maker movement in your community. It’s worth the effort.


RIP TechShop

Yesterday TechShop suddenly filed for Chapter 7 bankruptcy protection. TechShop is no more and its remaining assets will be sold off by the appointed Trustee.


It hits home insofar as we have purchased one of the original Embrace bracelets for my son who has seizures. This device will send out an alarm when a seizure occurs to the connected phones. It was listed as one of the success stories coming out of the TechShop.

+200,000 infants reached
+13,000 health care workers trained
105 programs in 20 countries
A life-saving incubation blanket for babies. In 2008, a group of Stanford students sought to address high mortality rates among premature and low-birth-weight babies by designing a better incubator for the developing world. The invention, the Embrace infant warmer, was prototyped at TechShop San Francisco and is now saving thousands of lives worldwide.

Here is the link to the TechCrunch story about the demise of TechShop.

As I am still working on my Video Doorbell, I can use NOVA-Labs which is very close by. As of today, some Americans will no longer have the ability to roll down the road to get their inventions into reality.

It would be great if the likes of Amazon, Apple, Google would step up and sponsor these types of locations all around to keep the spark of innovation going.

With this bit of sad new I will go and start my Friday.

Startup ignite November 2017

Today I went to one of our local startup incubator called startup ignite.

Startup Ignite Flyer
Startup Ignite Flyer

The Meetup was originally started by Amu Fowler in ? 2014 ? And over the years I went to a few of these meetings on and off. I find it very interesting to meet new people, and see what ideas or dreams they have.

Meeting Amu at the Ignite Meetup
Meeting Amu at the Ignite Meetup

The Place:

This months Meetup was focused on patent on general and how they retire to a startup. You can find a link to the video below.

NOVA-Labs Logo
NOVA-Labs Logo

It was held at the NOVA-labs facilities in Reston VA, which in itself is another very interesting space to discover. I have a few projects which could use a 3D printed Chassis or use some of their tooling or build a 12ft tall Optimus Prime.  But I leave this to another time.

NOVA-Labs mad science going on
NOVA-Labs mad science

The People:

In the past I have mostly met and talked with people who were in the ideation phase or in the very initial phase of building a prototype or advancing their ideas. This time around I met a few folks who were in beta testing ( rukku.io ).

I had also a very techie talk with Keith Fowler, who is one of the organizers and likes to talk about programming languages probably add much as I do.

The good, the better, and the best:

Overall the Meetup was about twice the size since the last time I went and the content of the speeches and presentations were at a great level. I can only recommend to go and visit one of those meetups if you are ever in the greater northern Virginia area.

Maybe it’s just me, maybe it’s the free pizza or maybe it’s the flair of the startup scene … but whatever it is, you will leave the place with a great satisfaction and who knows you may catch the startup bug.

Startup Ignite crowd
Startup Ignite crowd

Results from Fiverr for a new backdrop

I needed a new backdrop image for my YouTube Channel and while I was trying to come up with a good idea I wanted to see which results from Fiverr I could expect.


So at first I wanted to try the “Request a Gig”. However I did not appreciate that this feature is a curated feature and my request was rejected the next morning for some technical reasons. Obviously I sent in a support request because I wanted to understand what I had done wrong.

In the meantime I went ahead and was looking through the hundreds of designers who offered their services. This took about two hours of my time, which is exactly the reason I sent out the Request a Gig – request in the first place.

eventually I found a designer who had good reviews and was not asking for US $2800,- but a more reasonable $5,- for Basic, $15,- for standard, and $30 for the VIP package. Since I did not need VIP treatment but at the same time I though $5,- was on the cheap side, I went ahead and requested the $15,- standard package.

However I wanted to get at least one or two ideas / samples from him before I placed my order to avoid working with some one who is on a completely different train. So I contacted him, send him my requirements, and was surprised to see about 30 minutes later 4 screenshots with initial design suggestions.

Out of those I found one design which I considered a good starting point. So I asked him if he is willing to make some changes and replace some of the elements in the image with others. Wow, within about 15 minutes he had applied my changes.
I was impressed and wanted to place my order but he insisted that I first had to be happy with the results before I placed my order. I thought he wanted to avoid bad reviews, and as long as you don’t place an order I guess you can send a bad review ?

So anyways, long story short, it took a few hours back and forth, me on my smart phone, and he on his computer to eventually arrive to the image below.

Results from Fiverr

Backdrop created with Fiverr.

I was really happy with the results from Fiverr, and went ahead, placed my order and he sent the Adobe Illustrator file plus some rendered JPGs. However I found out that Inkscape on Linux would load the whole source file as a single Layer which was not what I wanted. So I asked him to send me the file as an SVG, which he promptly did, though yet again I could only see a single Layer.

I went again back and asked him to provide me the layers in separate layers, which he uploaded right away. All in all he provided me
12 layers
which I could then import in The GIMP in separate Layers and render to my liking.

Results from Fiverr

Overall this was a great experience and after I acknowledged the reception of my goods Fiverr offered the opportunity to give him another tip, which I gladly did.

All together, including tips and fees, I spent $27,- on the image and I had a great experience.

I have to say though that Fiverr is taking a bite out of you if you end up going for the $5,- Fiverr is charging you $1,- for a gig, Wich amounts to a whopping 16.66% of the total cost.

I will be going back and get some more artwork done for my SoftwareSamurai blog, or my YouTube Channel