Category Archives: Android

Revert Video Magic Video Android-app

After returning from vacation this year I wanted to edit and send some videos to my family which should highlight some of the more outstanding experiences in a funny but interesting way. The Revert Video Magic app for Android on the google play store was exactly what was needed for this job.

I was looking to take a piece of a video, and revert parts of it and then replace this part with a sequence of forward, backward, forward action all abound. Here is the resulting video to better explain the effect I was after.



I looked around but could only find one app on the google play market which would offer me this functionality. Revert Video Magic for Android

The below images are screenshots of the main screens for Revert Video Magic for Android

The Main Screen is where you select the source video from, that is you can either browse through the media library of your phone or you open a File Browser which allows you to browse the file system of your phone. You can even use your video camera and shoot the video from within the app.

Revert Video Magic Main Screen
Main Screen
Revert Video magic settings screen
Revert Video Settings screen
Revert Video Magic Share Screen
Share Screen

Once you have selected the source video you would like to use, you arrive at the settings page. The Revert Video Magic Settings page allows you to modify the resulting video resolution, the speed of the reverted part, as well as cutting the start and end points of the target video.

Once these settings are set, you will see the Post Processing screen of the revert Video Magic app. This page allows you to actually replace the selected part in-place of where the original video part was. None of the other revert video apps on the google play store do allow for this to happen.

Using the -SHARE- button on the top right corner of the Share screen will then allow you to finally send the video to your friends or share it on social media like YouTube, FaceBook etc.

This app is focused on doing one thing but doing it right. The built in video player, Camera functionality, File Browser, and Share functionality are all part of making reversing part of your video as much fun as the final video.

Feel free to download the app for free from the link below.

Get it on Google Play

Rpi WebRTC Streamer to Android WebRTC streaming

In this article I will setup Android WebRTC streaming to RPI-WebRTC-Streamer running on my Raspberry PI Zero W, to talk to each other.

Here is the architecture of RPI-WebRTC-Streamer.

Now why do we use WebRTC instead of directly streaming audio/video through a socket from the Raspberry PI to the Android device ?

It is helpful to understand how WebRTC works under the hood and how a connection is established.

The magic in WebRTC is the probing of the connection to allow two clients to talk P2P ( Peer-to-Peer ), even if they are behind a firewall or using NAT. There are plenty of online resources devoted to this complex topic ( E.g. https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/ )

The basic steps in establishing a WebRTC connection are:

  • Step 1: Signaling: both peers connect to a signaling server (using websockets over 80/443, comet, SIP,etc..) and exchange information (about their media capabilities, public IP:port pairs when they become available, etc.)
  • Step 2: Discovery: Devices connected to LAN or mobile networks are not aware of their public IP (and port) where they can be reached at so they use STUN servers located on the public Internet to discover their ip:port pair (ICE candidates). In the process they punch a hole through the NAT/router which is used in step3:
  • Step 3: P2P connection: once the ICE candidates are exchanged through the initial signaling channel each peer is aware of each other’s ip:port (and holes have been punched in NATs/routers) so a peer to peer UDP connection can be established.
  • Step 4: If a P2P connection can’t be established ( maybe through firewall rules or the usage of Symmetric NAT ) then TURN servers can be used, which will relay the data between the peers. Please note that this will require the TURN server to receive and send all video and audio and is the last resort in WebRTC.

Under normal circumstances you would establish the connection between two web-browser. However in this case I need to establish Android WebRTC streaming to the Raspberry PI Zero W. Fortunately we have the required tools and libraries available on both platforms and can take full advantage of this technology stack. This allows us to basically build a video conference similar to skype between the Raspberry PI and Android. As an aside, iOS can also handle WebRTC, which may be a project for later.

Android WebRTC Streaming:

  1. Lets first make sure you have the RPI WebRTC Streamer setup, as explained in my previous post.
  2. Then you have to install ADB onto your computer to be able to transfer the App to your Android phone.
  3. Connect your Android phone to your computer and make sure you have the developer option enabled
  4. Next get the source code for RPI WebRTC Streamer from github and install it onto your phone, like so.
    bash> git clone https://github.com/kclyu/rpi-webrtc-streamer.git
    bash> cd rpi-webrtc-streamer/misc
    bash> adb install AppRTCMobile.apk
    
  5. Next open the app on your Android phone
  6. Change settings of the Video encoder to H264 High
  7. Change the resolution to VGA(640 x 480)
  8. And then simply enter the IP address of your raspberry PI as the room number
Android WebRTC streaming in action
Android WebRTC streaming in action

Finally, here is the article from mpromonet if you ever feel like compiling rpi-webrtc-streamer https://www.raspberrypi.org/forums/viewtopic.php?t=186271.
You can even use docker containers to make things easier: https://hub.docker.com/r/mpromonet/webrtc-streamer/

As an aside, I found multiple Android app templates to use WebRTC

uv4l WebRTC vs rpi-webrtc-streamer

I have spent the past two days working with the uv4l driver to get WebRTC working. I eventually got everything to work with three major issues

  1. I could not get the transmitted quality to anything close to what I needed
  2. I could not get rid of the the watermark which was put over the video
  3. The complete CPU utilization for 640×480 was above 90% and caused issues.

Another slightly annoying issue was that I had to re-install Jessie after I found out that uv4l is currently not available for Raspbian stretch lite. I could only find the full version for Jessie, which requires at least a 8GB microSD card. And off I went to replace my 4GB microSD card.

On the positive side I installed rpi-webrtc-streamer from github and was able to look at the results in realtime right away.

Unlike uv4l, which is based off OpenWebRTC from Ericson, rpi-webrtc-streamer is based off the Native Code from www.WebRTC.org which seems to be a bit more responsive than uv4l.

Here are the steps I had to do to get things to work.

bash>  # First create a home for the code
bash>  mkdir utils && cd utils
bash>  git clone https://github.com/kclyu/rpi-webrtc-streamer.git

You can find the Android App under rpi-webrtc-streamer/misc/AppRTCMobile.apk
But first lets avoid the work and go straight to installing the software.

Go to https://github.com/kclyu/rpi-webrtc-streamer-deb and download the appropriate deb-package.

bash>  dpkg -i rws_xxx_armhf.deb
bash>  sudo systemctl start rws

Then simply point your browser at http://<IP Address>:8889/native-peerconnection/

Raspberry PI camera
Raspberry PI camera

I will be going through the setup and usage of the Android App which is part of rpi-webrtc-sstreamer in one of my next blog entries.